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Overview

• Introduction to image registration
• A.k.a ‘finding a good alignment between images’

– Transformation models
– Similarity measures
– Optimisation techniques (briefly)
– Rigid and non-rigid registration algorithms

• Examples
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What is image registration?

C. Ruff, 1995

A motivating example
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Image to image registration

• Intra-subject registration
– Aim: Registration of different images of the same subject.
– Purpose: Combine anatomical and functional information from 

different imaging modalities.
– Examples:

• Registration of CT and MR images of the brain for surgery 
and therapy planning

• Registration of MR and SPECT/PET images for localisation of 
tracer uptake to indicate brain physiology or of the head and 
neck for cancer staging
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Image to image registration

• Inter-subject registration
– Aim: Registration of images of different subjects.
– Purpose: Assess morphometric variability of anatomical 

structure across individuals.
• Serial registration

– Aim: Registration of a sequence of images of the same subject 
(over time).

– Purpose: Monitor temporal changes; assessing drug treatment, 
disease progression in conditions such as epilepsy, multiple 
sclerosis.
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• Fusion of MR and CT head image:

Intra-subject registration example

MRI CT MRI + CT



Intra-subject registration example

• Fusion of MR and PET head image :
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MRI PET MRI + PET



Registration of pre-operative CT and MRI to intra-operative scene

Intra-subject registration example
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Inter-subject registration example

Registration of pairs of images from different subjects 
Construction of an atlas (average) representation of anatomy



What is image registration ?
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What is image registration ?
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What is image registration ?
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What is image registration ?
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Image registration as an 
optimisation problem



Components of any generic registration 
algorithm

• Similarity measure
– How similar are the images/features after registration, in other 

words how good is the registration?

• Optimisation method
– How do we find the transformation that maximises the similarity? 

May need to incorporate constraints.

• Transformation model
– What type of transformations are allowed. Are there constraints 

that the transformation model should satisfy?



Overview
N

on-rigid 
registration

• Transformation models
– Splines
– Elastic and fluid models
– Regularisation

R
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• Transformation models 
– Rigid
– Affine

• Similarity measures
– Mono-modal registration
– Multi-modal registration



Transformation models

• A transformation can be described by the number of 
parameters it has 

• Often referred to as Degrees of Freedom or DOF
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Rigid transformation

• Compensates for global patient repositioning
• Preserves distances and angles.

• Appropriate for: 
– brain, bone, optically tracked surgical instruments
– often used to initialise non-rigid registration
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Translation (3) Translation+Rotation (6)Rotation (3)



Rigid transformations
• Rigid transformation (6 degrees of freedom)
• Can be written as a single matrix multiplication

• tx, ty, tz describe 3 translations in directions x, y, z
• r11, ..., r33 describe the 3 rotations around the axes x, y, z 

• Uses homogeneous coordinate notation
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• Compensates for additional global scaling and 
shears

Affine transformations

Shear (3)Scaling (3)

Translation (3) Translation+Rotation (6)Rotation (3)



Affine transformations
• Some more matrices

• Affine transformations (12 degrees of freedom)
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Similarity measure categories

• Feature-based similarity measures of specific 
geometric features
– e.g. points, lines, ridges, surfaces, curvature extrema
– registration minimises distance between corresponding features
– correspondence is interpolated between features

• Voxel-based similarity measures of intensities 
across the whole image
– registration maximises a measure of image intensity similarity
– correspondences are used everywhere during the registration
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Registration based on voxel-based  
similarity measures

• Registration based on geometrical features
– Requires points, lines or surfaces to be extracted
– Registration accuracy affected by localisation errors during the 

feature extraction
• Registration based on voxel similarity measures

– Uses some measure directly derived from voxel intensities
– Assumes there is a relationship between the intensities of both 

images when they are aligned
– Does not require any feature extraction, so registration accuracy 

is not affected by localisation errors
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Registration based on voxel-based  
similarity measures

• Geometric features
–independent of image modalities that give the features (e.g. 

edges)

• Voxel similarity measures
–must distinguish between 

• mono-modality registration:
–CT-CT, MR-MR, PET-PET, etc

• multi-modality registration
–MR-CT, MR-PET, CT-PET, etc
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If a registration uses …

Will focus on voxel 
based registration. 
For more details of 
feature based 
approaches, please 
see the appendix



Mono-modal image registration
• Sums of Squared Differences (SSD)

– Assumes an identity relationship between image intensities in 
both images

– Optimal measure if the difference between both images is 
Gaussian noise

– Sensitive to outliers
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Mono-modal image registration

• Robust statistics can be used to reduce the 
influence of outliers on the registration

• Sum of absolute differences (SAD)

– Still assumes an identity relationship between image intensities
– less sensitive to outliers
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Mono-modal image registration

• Cross Correlation (CC)

–       is the average intensity in image A
–       is the average intensity in image B
– assumes a linear relationship between image intensities
– useful, for example, if images have different intensity ranges 

(common in MR)
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Registration: Mono-modal vs Multi-modal

• Mono-modal
– Intensities are related by some simple function

• identity: Use SSD (e.g. CT to CT registration)
• linear: Use CC (e.g. MR T1 to MR T1 registration)

• Multi-modal
– Intensities related by an unknown function/statistical relationship
– Relationship between intensities can be viewed by inspecting a 

2D histogram or co-occurrence matrix 
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Multi-modal images: Measuring similarity

CT MRbone

airsoft tissue



Multi-modal images: Measuring similarity

Joint Histogram,
co-occurence
counts …



Measuring similarity: 2D histograms
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registered mis-registered by 2mm mis-registered by 5mm

A mono-modality example (MR/MR) 
(Same image twice!)



Measuring similarity: 2D histograms
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MR/CT

MR/PET

registered mis-registered by 2mm mis-registered by 5mm

mis-registered by 2mm mis-registered by 5mmregistered

Multi-modality examples



Measuring similarity: 2D histograms
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From images to probability distributions

• Frequency of corresponding intensity pairs can be 
interpreted in terms of probabilities
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Voxel similarity using information theory

• Entropy (Shannon-Wiener)

describes the amount of information in image A.  
• Joint Entropy

describes the amount of information in the 
combined images A and B.
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Voxel similarity using information theory

• Venn diagram representation:

• Each circle represents the information content of 
one of the images - Intersection: shared information
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Voxel similarity using information theory

• Mutual Information (Viola et al., 1995 and Collignon 
et al., 1995)

describes how well one image can be explained by 
another image.

• Mutual Information can be expressed in terms of 
marginal and joint probability distributions: 
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Optimisation of voxel-similarity measures

• Optimisation of voxel-similarity measures normally 
requires iterative (gradient-based) techniques, E.g.
– Steepest gradient descent
– Conjugate gradient descent
– More recently, discrete gradient free optimisation techniques 

have been used (e.g. Glocker et al, IPMI 2007)
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• In general:
– Global optimisation schemes are not feasible for image 

registration 
– Local optimisation schemes are much more efficient but will get 

trapped in local optima
– Registration has a limited ‘capture range’

Optimisation of voxel-similarity measures
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Optimisation of voxel-similarity measures

measure

Alignment

inside capture range outside capture range



Similarity 
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Optimisation of voxel-similarity measures
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Multi-scale optimisation

Capture range can be improved with multi-scale methods:
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Multi-resolution optimisation

Registration can be accelerated with multi-resolution 
techniques:
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Rigid registration using  
Mutual Information

Thanks to  
Colin Studholme

Visualise 
progression 
of parameter 
estimates



Rigid registration using  
Mutual Information

Thanks to  
Colin Studholme

Visualise 
progression 
of parameter 
estimates



Non-rigid registration

• Rigid registration is appropriate for 
– brain (constrained by skull)
– bone (neck, vertebrae)

• Affine registration is appropriate 
– if not all image acquisition parameters are known:

• unknown voxel sizes
• unknown gantry tilt

– if scale changes are expected:
• growth
• inter-subject registration
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Limited applicability  
except as initialisation 

for non-rigid registration



Non-rigid registration in neuroimaging
A number of application areas:
• Motion:

– Compensation for tissue deformation
• Brain deformation during neurosurgery
• Fusion of functional and anatomical information (MR/PET, 

etc.)
• Longitudinal or cross-sectional studies:

– Quantification of change over time, 
• brain atrophy
• brain growth

– Quantification of differences between populations
• voxel-based morphometry (low-dimensional transformations)
• deformation-based morphometry (high-dimensional 

transformations)
• Atlas-based studies

– Segmentation via atlas propagation
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• Transformation T(x) = x’ defines spatial relationship 
between two images:

Representing deformations

x’ = T(x) = x + u(x)

T(x) 

x’ 

x 
u(x)



Representing deformations
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Before deformation After deformation

x + u(x)x



Representing deformations
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Displacement in the 
horizontal direction 

ux (x, y)

Displacement in the 
vertical direction 

uy (x, y)



Types of non-rigid transformations

#DOFs = #voxels

• Non-parametric transformations
– optical flow type registration (e.g. Demons)
– elastic registration
– fluid or geodesic registration

#DOFs << #voxels

• Parametric transformations
– affine transformations
– polynomial transformations

• linear
• quadratic
• cubic

– spline-based transformations



Types of non-rigid transformations

#DOFs = #voxels

• Non-parametric transformations
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– elastic registration
– fluid or geodesic registration

#DOFs << #voxels

• Parametric transformations
– affine transformations
– polynomial transformations

• linear
• quadratic
• cubic

– spline-based transformations



Non-rigid transformations
• Recall affine transformation: linear function of (x,y,z). 
• It has 12 DOF

• Can get non-rigid version with higher order polynomials:
– 2nd order
– For a linear function T
– Needs 30 parameters (30 DOF)

– Higher orders: (3rd, 60 DOF), (4th,105 DOF), (5th,168 DOF)
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Non-rigid transformations

• But higher order polynomials have problems:
– Can model only global shape changes, not local shape 

changes
– Modifying a single parameter has an effect globally
– Higher order polynomials introduce artifacts such as oscillations

• Has been used for registration
– Woods et al., Journal of Computer Assisted Tomography, 22(1), 

1998, pp 153-165
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Non-rigid transformations

• Alternative to polynomials: Use linear combinations 
of basis functions θi
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Non-rigid transformations

• Basis functions may be
– Trigonometric basis functions (used by SPM)
– Wavelet basis functions

• Used for registration
– Amit, et al., Structural Image Restoration Through Deformable 

Templates, Journal of the American Statistical Association, 86, 
1991

– Ashburner & Friston, Nonlinear spatial normalization using basis 
functions, Human Brain Mapping 7, 1999
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Splines for modelling non-rigid 
transformations

• Engineering:
– Splines are long flexible strips of wood or metal which were 

deformed by attaching clamps or weights along their length
• Mathematics:

– Splines are a tool used to approximate or interpolate functions 
from scattered data:

– 1D: curves
– 2D: surfaces
– 3D: volumes
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Non-rigid registration 
Interpolating splines

• Basic idea:
– identify a set of points φi in image A
– identify the corresponding points φ’i in image B
– find a spline transformation which 

• Interpolates the displacement field at the points φi → φ’i

• Produce smooth displacement field everywhere else

– points can be:
• anatomical or geometrical landmarks
• pseudo landmarks or control points
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• Thin-plate splines can be defined as a linear combination of radial 
basis functions θ :

• A transformation between two images can be defined by three 
separate thin-plate splines:
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Need to find the a’s and the b’s
φi and T(φi) = φ’i are given

Non-rigid registration
Thin-plate splines



• Solve for a’s and b’s by writing interpolation 
conditions T(φi) = φ’i in matrix form
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a : 4 x 3 matrix containing the affine coefficients

b : n x 3 matrix containing the non-affine coefficients

Θ : a n x n matrix with
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Φ,Φ’ : n x 4 matrices with point data



• Used for registration:
– With points: (Bookstein, Principal Warps: Thin-Plate Splines and 

the Decomposition of Deformations, PAMI, 11, 1989, also 
Goshtasby, IEEE Geoscien. & Rem. Sensing, 1998)

– With voxel similarity measures - (Meyer, Medical image analysis 
1, 1997)

• Advantages:
– Control points can have arbitrary spatial distribution

• Disadvantages:
– Control points have global influence since the radial basis function 

has infinite support
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Non-rigid registration
Thin-plate splines



Free-Form Deformations (FFDs):

• A common technique in Computer Graphics for 
modelling 3D deformable objects

• Parametrised by a regular nx × ny × nz mesh of control 
points Φ, each with a vector and with a spacing of δ

• Deform underlying object by manipulating the 
control points

• Control points only affect local neighbourhood 
(compact support)

67

Non-rigid registration
B-splines



• FFDs based on B-splines can be expressed as a 
3D tensor product of 1D B-splines:

where
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Non-rigid registration
B-splines

• Summation only over control points in local neighbourhood 
of (x,y,z) - compact support.



69

• Bi corresponds to the pieces of the B-spline basis 
function:

1-2 -1 2

1/6

2/3

B(!)

!

Non-rigid registration
B-splines



70

source

target

Non-rigid registration
Free-form deformations
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Non-rigid registration
Free-form deformations



Non-rigid registration
Free-form deformations
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5 mm spacing 20 mm spacing

Displacement of 1 control point along 1 axis

Thanks to Marc Modat



Image registration: Adding regularisation

• Non-rigid registration problem is ill-posed: there are 
many possible solutions. 

• So regularisation is often included in the cost 
function to obtain realistic deformations:

• Bayesian interpretation:
– Similarity term → likelihood
– Penalty term → prior probability which expresses our 

knowledge about what kind of deformations we expect
73

C = S +!P

Similarity Penalty



Image registration: Adding regularisation

• Diffusion-like regularisation

• Curvature-like regularisation

• Others like volume preservation (see next slide)
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• Jacobian determinant

Key property of non-rigid transformations

Jac(u) = det
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Jac(u) Properties

Jac(u) = 1 volume preservation

Jac(u) < 1 local contraction

Jac(u) > 1 local expansion

Jac(u) = ∞ tearing

Jac(u) < 0 folding



Regularization penalties revisited …

• Local volume preservation (Rohlfing, TMI 2003):

• Local rigidity (Loeckx, MICCAI 2004):

• Others are possible, e.g. for topology preservation



Types of non-rigid transformations

#DOFs = #voxels

• Non-parametric transformations
– optical flow type registration (e.g. Demons)
– elastic registration
– fluid or geodesic registration

#DOFs << #voxels

• Parametric transformations
– affine transformations
– polynomial transformations

• linear
• quadratic
• cubic

– spline-based transformations



Registration using optical flow
• Optical flow is a well-known computer vision 

technique. 
• Often used to register successive frames in video 

sequences
• Basic assumption is brightness constancy

– Point at (x,y,t) ‘flows’ to (x+Δx, y+Δy, t+Δt) and keeps its 
brightness
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Registration using optical flow

• Use Taylor series and ignore higher order terms, 
OF equation becomes:

• Or

I-J : Temporal difference between images
∇ I : Spatial gradient of the image

u : Displacement (‘flow’) between images

To estimate the displacement field, we need 
additional constraints (i.e. smoothness)
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• We have  a single OF equation in 2 or 3 variables. 
I.e. many solutions possible

• Relates to the ‘aperture problem’
• One solution is

• To avoid instabilities this can be modified

Variants of optical flow: Demons

Thirion, Image matching as 
a diffusion process: an 
analogy with Maxwell's 
demons. Medical Image 
Analysis 2, 1998
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Thirion, Image matching as 
a diffusion process: an 
analogy with Maxwell's 
demons. Medical Image 
Analysis 2, 1998

Variants of optical flow: Demons



Elastic registration

• Deformation modelled as a physical process: 
resembles stretching of an elastic material (e.g. 
rubber)

• Deformation governed by two forces
– internal force: caused by deformation of the elastic body, i.e. 

stress. Total internal force is zero if the body is in equilibrium.
– external force: acts on the elastic body and causes the body to 

deform away from the equilibrium.
• External force can ‘drive’ the registration based on 

– Distance between corresponding geometric features (points, 
lines or surfaces)

– Voxel-similarity measure



Elastic registration

• Elastic deformation described by a linear partial 
differential equation (PDE):

µ⇥2u(x, y, z) + (� + µ)⇥(⇥ · u(x, y, z)) + f(x, y, z) = 0

       - Displacement field
      - External force
      - Gradient operator
      - Laplacian operator
      - Lamé’s elasticity constants (reflect material properties)



Elastic registration

• PDE can be solved using either
– Finite differences and successive overrelaxation (SOR)

• Produces a dense displacement field: Vector at every voxel
– Finite element methods

• Produces a sparse displacement field at the FEM nodes.
• Displacement at every voxel can be obtained by interpolation

• Problems:
– Cannot cope with large deformations
– Cannot cope with changes in topology

• Extensions of elastic registration
– Spatially varying elasticity parameters (Davatzikos, 1997)
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Large  
deformation  

models

Small  
deformation  

models

Types of non-rigid transformations

• Parametric transformations
– affine transformations
– polynomial transformations

• linear
• quadratic
• cubic

– spline-based transformations
• Non-parametric transformations

– optical flow type registration (e.g. Demons)
– elastic registration
– fluid or geodesic registration
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Fluid registration
• Advantages:

– Can cope with large deformations
– Preserves topology

• Similar to elastic registration, uses a partial 
differential equation, but solves for velocity field v

Velocity is estimated over a series of time steps

µ⇥2v(x, y, z) + (� + µ)⇥(⇥ · v(x, y, z)) + f(x, y, z) = 0

Christensen, Deformable templates using large deformation kinematics, IEEE Transactions on 
Image Processing, 5 1996
Bro-Neilsen, Fast fluid registration of medical images, VBC 1131, 1996



Fluid registration

• Deformation of point x is represented with a time 
varying displacement g(x,t)

• g(x,t) traces out a path from x to its destination x’ 
– As t varies from 0 to 1

x’

x



Fluid registration
• Carried out in a series of steps
• At each step

• Update current estimate of v 
• Update g by adding v at current position

t = 0.00



Fluid registration
• With each increment, we can update the moving 

image and recalculate the velocity field
• I.e. v varies in space and time

t = 0.25



Fluid registration

t = 0.50



Fluid registration

t = 0.75



Fluid registration

t = 1.00



x� = g(x, 1) = x +
� 1

t=0
v(g(x, t))dt

Fluid registration



Geodesic registration

• Traditional fluid registration techniques
+ Can deal with large deformations
+ Are diffeomorphic
– Approximate a greedy solution for the deformation, not 

necessarily optimal
• Geodesic registration techniques

+ Determine the shortest path (geodesic - in group of deformations)
+ Resulting deformation can be used as a metric

• Several competing approaches:
– F. Beg et al. Computing Large Deformation Metric Mappings via 

Geodesic Flows of Diffeomorphisms. IJCV 2005.
– B. Avants et al. Symmetric diffeomorphic image registration with 

cross-correlation, Medical Image Analysis 2008



Thanks to S. Joshi

LDDMM registration

Diffeomorphisms: one-to-one onto (invertible) and 
differential transformations. Preserve topology. 

In fluid or geodesic registration transformations are constructed 
using the group of diffeomorphisms of the underlying coordinate 
system



Alternatives to LDDMM registration
• Use stationary instead of time-varying velocity fields:

– J. Ashburner, A fast diffeomorphic image registration algorithm, 
Neuroimage 2007

– T. Vecauteren et al., Diffeomorphic demons: Efficient non-parametric 
image registration, NeuroImage 2009

• Integration of velocity fields can be solved very 
efficiently using scaling and squaring, e.g. for 3 steps 
we have:



Scaling and squaring



Freely available implementations

98

SyN (ANTS based on ITK)

Demons (part of ITK)

Dartel (part of SPM)

IRTK

FNIRT (part of FSL)

F3D (part of NiftyReg)

Elastix (based on ITK)

Non-parametric registration Parametric registration

Symmetric registration 
Non-stationary velocity field

Gaussian regularisation 
Various implementations

Stationary velocity field - 
scaling and squaring

The Original Free-Form 
Deformation implementation

Free-form deformation with 
multiple extra parameters

Free-form deformation with a 
focus on computation time

Free-form deformation using 
multiple filters

Freely available implementations



Thanks !!!



Appendix on feature based methods

Following slides contain a few further details on 
registration using features.



Generic feature-based registration:
Algorithm

While dissimilarity > 0 and improvement possible

do
 Feature extraction  
 Feature pairing
 Similarity formulation and outlier removal
 Dissimilarity reduction (optimization)

101

Great variety in how each step can be carried out 
depending on images and task!



Generic feature-based registration:  
Using points

• Orthogonal Procrustes problem:
– Named after a robber in Greek mythology. Offered travellers opportunity to 

stay the night in a perfectly fitting bed. 
– Unfortunately, it was the guest who was altered to fit the bed, rather than 

the bed to fit the guest!
– Short visitors were stretched to fit, and tall visitors had parts of their body 

cut off so that they would fit,  with invariably fatal results. 
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The hero Theseus stopped 
this unpleasant practice  
by subjecting Procrustes  
to his own method.



Generic feature-based registration:  
Using points for rigid registration

• Optimal fitting problem of least square type:
– Closed-form solution for rigid (orthogonal) case
– Given two sets of N points {xi} and {yi} 
– with known correspondence
– find the rigid-body transformation (rotation matrix R and 

translation vector t) that minimizes the mean squared distance 
between the points:
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Generic feature-based registration:  
Using points for rigid registration

Centre data …

… and rotate …

t

iRx ix tRx +i

… find translation

x

y
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• Centre points:   
– Compute mean:                               
– Centre wrt mean:                           

• Determine rotation matrix R: singular value 
decomposition (SVD) of correlation matrix H:

• Determine translation vector:

Generic feature-based registration:  
Using points for rigid registration



Generic feature-based registration:  
Using points for rigid registration

• Anatomic landmarks
• Skin-affixed markers
• Bone-implanted markers
• Advantages of markers

– Fiducial* is independent of anatomy
– Automatic algorithms for locating fiducial markers 

can take advantage of marker’s shape and size 
in order to accurately and robustly compute the 
fiducial point
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Wikipedia: A fiducial marker or fiducial is an object placed in the 
field of view of an imaging system which appears in the image 
produced, for use as a point of reference or a measure. 



“Bummer of a birthmark, Hal!”
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Skin-Affixed Markers

• Advantage:      non-invasive
• Disadvantage: can move due to mobility of skin

108



Bone-Implanted Markers

• Advantage:      cannot move 
• Disadvantage: invasive
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Bone-Implanted Markers

CT MR-T1 MR-T2



Generic feature-based registration:  
Using surfaces

• Generally aligns a large number of points 
• 3D correspondence of anatomy or pathology is 

often not known or unavailable
• The 3D boundary of an object is an intuitive and 

easily characterised geometrical feature that can be 
used for registration

• Surface-based methods involve determining 
corresponding surfaces in different images and/or 
physical space and finding transformation that best 
aligns these surfaces
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Generic feature-based registration:  
Using surfaces

• Skin surface (air-tissue interface)
• Bone surface (tissue-bone interface)
• Representations

– Point sets (collection of points on the surface)
– Faceted surfaces e.g., triangle set approximating surface
– Implicit surfaces
– Parametric surfaces, e.g., spline surface
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Surface Extraction

• Images
– Isointensity contour extraction (Marching Cubes)
– Deformable models

• Physical space
– Laser range finders
– Stereo video systems (photogrammetry)
– Localizers

• Articulated mechanical
• Magnetic
• Active and passive optical

– Tracked ultrasound for bone surface
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Marching Cubes: Example

114



Marching Cubes: Example
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Skin surface Bone surface



Generic feature-based registration:  
Using surfaces

Given
• N surface points {xi} 
• A surface Y 
Find transformation T that minimises the mean squared 
distance between the points and the surface:

yi is the closest point on Y to xi , not necessarily 
corresponding
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Generic feature-based registration:  
Using surfaces

• Iterative Closest Point (ICP) [Besl & McKay, PAMI 
1992]

• To register data shape X to model shape Y, 
decompose X into point set {xi} , then
–Compute closest points {yi} on Y
–Register points {xi} to points {yi} 
–Apply resulting transformation to points {xi}
–Repeat until convergence
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Generic feature-based registration:  
Using surfaces  


